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The theory of vibrational ladder climbing excitation by coherent stimulated nonresonant Raman using chirped
laser pulses is developed. We analytically obtain the conditions for inverting the population to a final preselected
vibrational state and the restrictions that apply in the linear chirp regime. By controlling both the shape of the

laser pulses and the chirp profile, the ladder climbing process can be accelerated without reducing the yield

of the selective excitation. Numerical results are presented for selection of moderately excited vibrational
levels in Na, where the important contribution of several excited electronic states is also clarified.

I. Introduction at least as long as the whole sequencevof (1)7 pulses and
the intensity stronger than the intensity of each one. For
sufficiently intense pulses, the population can be adiabatically
transferred from the initial state up to dissociation with 100%
efficiency at least in principle. The method is both robust and
not especially difficult to implement in the laboratory with state-
of-the-art technology.

For molecules without a permanent dipole moment, the ladder
climbing method can be implemented using nonresonant
stimulated coherent Ramé&nt? In this case, either the pump

Exciting molecules in specific high vibrational states has been
a long-sought goal, both for a better understanding of the
spectroscopic properties of the molecule and for igniting some
unimolecular (bond breaking) or bimolecular (reactant preparing)
reactions. In molecules with a permanent dipole moment,
infrared (IR) laser pulses have been used to pump the vibrational
energy. By multiphoton IR processes, it has been possible to
excite single modes in regions of high anharmonicity and to
zesls)r.\ée;gsvesvﬁ,segﬁsnttolrmzm\?:f;u\ll\?éa\ab{?;&?ﬁége;‘;i}fn or the Stokes or both pulses must be chirped. The detuning with

moments between the around and hiah vibrational eigenstates respect to excited electronic states is required in order to avoid
S | (e groun 9 9 ‘absorption. Although there are a number of schemes which make
population inversion is unlikely to succeed. For coherent

interactions, the minimum time for population inversion (defin- use of resonant Raman transitions, such as stimulated Raman
. ’ ime for popul : adiabatic passage (STIRAPDr stimulated emission pumping
ing the so-calledr pulses) is given byr times the inverse of

; - . (SEP) the Raman ladder climbing is an alternative method
Lhnizég;fffienfﬁ”%;é?éﬁﬁ!ﬁ}%@ﬁ{gf(gi;f:?ﬂ%‘#}ﬁn especially suited for dissociation or high vibrational energy
Ov — v 0 P H H H 1 1

e ) o . . excitation, since it benefits from the larger effective two-photon
Ei?”\?:r; t\?v(z;ink'tl[?gﬁ‘giﬁgg;naﬁ)”l) V;t;]rgt't%g?le%?:ngggﬁ?gt?jh transition dipole moments between adjacent vibrational levels.
Ov ’

inversion requires long pulses, with the onset of decoherent andcli:]rqlbtirr']IS %Z?i(\a/:}lwihie\r/glzﬁ)rg dgigﬁ:jai‘,:ig;go%rorhza;até?]c:g?r
nonradiative processes, or very strong laser sources, usually. 9 9 d q

implying competition between several multiphoton routes, if not {E\éerﬁ'ﬁimaaquﬁ]u;ig??hzem zlegx?:(ijtz‘ifﬁyfe:i; alr;d sggggg
directly ionizing the moleculé. g€,

. . vibrational level. W monstr he importan ntribution
A possibility proposed by Manz and colleagtisto fraction brational leve e demonstrate the important contributio

th T ition int | tial st b of whi hof highly excited electronic states and the possibility of
the overall transition into several sequential Steps, each ot whic improving the yield of the process by a suitable election of the
is driven by a properr pulse. The limit of this strategy is to

lse f inal ¢ ¢ itatl laser amplitude and chirp profiles. The validity of the theoretical
US€ oner puise Tor every single gquantum step excitatton results is numerically tested showing the efficiency of the Raman
v + 1. The population then follows a pattern equivalent to

imbi ladd i ft th hich tak dvant ladder climbing method applied to the selective excitation of
climbing a fadder one step arter another, which takes advantage, ;, iionay states of a nonrotating sodium dimer. In section 2,
of the (usually) larger transition dipole moments involved

between adjacent vibrational states, especially in approximatel we present the molecular model and calculate the effective
1ad) . » €SP y In app YRaman Rabi frequencies. In section 3, we develop the theory
harmonic potentials. Nevertheless, the overall sequence of (

_ 1)z pulses is both experimentally difficult to prepare and of optimal Raman ladder climbing, which is numerically tested

. ) ) in section 4. Section 5 is the conclusion.
moreover poorly robust, since the yield of each step is very
sensitive to frequency, time, and intensity variations, and the
overall yield is the product of the yields of every step. This
also explains the inability of optimal control algorithms to obtain In Raman ladder climbing, the system is exposed to the action
this kind of solution, when not properly biase@helkowski et of two fully overlapping lasers, the puntf(t), and the Stokes
al® and Guerii showed the way to circumvent the problem Eg(t) pulses. The pulses have the same amplitude, and the
using a single pulse with slowly varying frequency, adapted to frequency of the pump is negatively chirped; that is, its carrier
the anharmonicity of the potential. The pulse duration must be frequency smoothly decreases. The same results can be obtained
by positively chirping the frequency of the Stokes pulse or
*E-mail: ignacio@tchiko.quim.ucm.es. chirping both.

1. Model for Nonresonant Raman in Na,
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il vibronic eigenstates of the coupled electronic stafegy, X,

n 3 (4s) 0= ZaetMBN (D] (9| Za(g) whereM = 4in the
model that we use for N and obtain the nonrotating time-

dependent Schdinger equation (TDSE) for the vibrational

amplitudes,

M N
id“(t) = 0“4 — ; ZO {Qy 5P (Ocosk b)) +
Zok=

Qi s Mcos O} 41 (2)

red In eq 2, the pump and Stokes one-photon Rabi frequencies are

detuning blue - those of the electronic transitions between the vibronic states,
detuning Qaj'ﬁk(p)/ (S)('[) = @0,-(“)®Ea|ﬂEp/s(t)|(pk</3)®35[ﬁ, WhEI'EEp/S(t) refers

A Zg(35) to either the pump or the Stokes pulse envelopes. The fast

oscillatory terms that depend with the carrier frequencies of the
/—_——' pulseswys(t) are not included in the Rabi frequency definition.

J The dot indicates a time derivative. The general Sdimger

v AV equation can be simplified assuming that the population in all

Figure 1. First electronic potentials of the Naimer. Solid line are the excited electronic states is very small, which is a good

the potentials that can contribute to the Raman process. The remaining?PProximation for nonresonant transitions when the Rabi
potentials are in dashed lines. Also shown are the frequencies of thefrequencies of the absorption processes to the excited states are

pump and Stokes pulses used in the calculations of the paper, definingfar smaller than the respective detunings. If additionally the Rabi

the so-called red detuning and blue detuning cases. frequencies are smaller than, ws, and wp, — ws, then the
. . . rotating wave approximation (RWA) can be used. Following
Even in simple diatomic molecules such as Néor a the method of adiabatic eliminatidAthe equations of motion

quantitative prediction of the dynamics driven by nonresonant ¢ 5| amplitudes of the excited electronic state§)(tywith o
pulses, we have to take into account the contribution of several > 1 can be formally integrated in terms of the ground-state

electronic states. In Figure 1, we show the first singlet electronic gmpjitudes. Then, the TDSE can be simplify to obtain the
states of the Namoleculel® For the nonresonant Raman fo|iowing effective equations of motiok,

transition only antisymmetric “u” states [mainkg,(3p), 1,

(3p), and'=,(4s)] can contribute. We have basically considered id-(l)(t) — (w-(l) o) (pp)(j iH—Q (ss)(j j t))d-(l)(t) _
calculations at two different wavelengtha); ~ 8933 cm-1 J ! ROV '1 RS

(the red detuning case) and; ~ 24 296 cm-1 (the blue - Ot (P 1)

detuning case). The wavelengths were chosen to avoid competi- 25 €0, k a0 ()

tion of other multiphoton processes. As Figure 1 shows,

excitation of antisymmetric electronic states by absorption of where the two-photon detuning &t) = wp(t) — w4(t) if k >

an odd number of photons, or to symmetric electronic states byi [or w(t) — wp(t) if i > k, assessing the Hermitian symmetry
absorption of an even number of photons, are all nonresonantof the Hamiltonian] and the Rabi frequenc@g@)(j, k, t) are
and very unlikely for the wavelengths considered. The contribu- now two photon effective Raman Rabi frequencies. To simplify
tion of 2+ 2 or 3+ 3 hyper-Raman processes is also negligible. the notation, we have included the index as a discrete variable.
In this case, the time-dependent Satinger equation (TDSE)  Now eq 3 only involves the amplitudes of the ground electronic

can be written as vibrational states, and therefore is a TDSE that models the
) dynamics under an effective Raman Hamiltonian. The adiabatic
Pq(x,) elimination is formally equivalent to a second-order perturbation

. 1};2(x,t) expansion except that the ground amplitudes are not substituted

ih Pa(xt) = by their initial values in eq 3. In terms of the one-photon Rabi

frequencies, the diagonal two-photon effective Raman Rabi

Vax0) frequencies are
T+ Vi(¥) = U (E() —p1z(ER) —u,0E() O n2s - () @
—up (E® THV,(0 0 0 QS | 1) = 18N Qg ON (@n™ — )
—u(XE() 0 T+V;x) o0 x R o ZZZrnz ©@ _ (N2 _ 2
« (wm wj ) wp/s(t)
—u1(NE® 0 0 T+ V,(¥) 4)
P, (x,0) giving account of the dynamic Stark shifts, whereas the
P, (Xt) nondiagonal coupling terms are
1
Pa(xit) ) o) (DS)(j kt)=
Pa(X1) RN
M N 1
_ Q (p)(t)g (S)(t) +
whereE(t) = Ey(t)cosfwp(t)t] + Es(t)cosfws(t)t], and we only ZZZD am, 1k am,1k @ (1)
include the coupling between the ground and the first three ~ “*~™ N

excited antisymmetric electronic states.
To further analyze the dynamical behavior of the system, we @ @ 5)
expand the wave function of the system in the basis of the R P O (Y
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Figure 2. Effective Raman transition dipole momentk(i, j)) giving account of the Stark shift and sequential ladder climbing couplings. (a)
Gr(i, J) calculated for the red detuning case and (b) for the blue detuning case. (c) Calculation done including only the first excited potential or three
excited potentials, as in the model proposed in the paper.

with j = k, which provide the transition amplitudes for the 1

vibrational ladder climbing. The two-photon Rabi frequencies ©-8 |
involve a summation over all thé\j vibrational levelsgpy,(®- 06
(X) (with eigenvalues{¥) of every (M) excited electronic state ~ 0.4
o coupled with the ground state. In our calculations, we limit 0.2
M to the first three antisymmetric excited electronic states. The 0 L
effective Raman Rabi frequencies depend on the intensity of
the field. Their time dependence comes from the laser profile 4 . T . — L e et S
via the one-photon Rabi frequency, and from the time-dependent g [ © IL () ]
detuning in the denominators, which is very slow and can be L A 1L ]
neglected or expanded as a function of the chirp. Therefore, 0'4 i 1t ]
we can define the effective Raman transition dipole moments 0'2 i 1t j ]
(RTM), Ggr(j, K = {Qr@A(, k, )} {Ea()Es(t)}, which only '0 N E

depend on the geometry and energy of the potential energy "o 50 100 150 200 0 50 100 150 200 250
curves involved, that is, on the Frane€ondon factors and the t/ps t/ps

carner freque;nues of the Iaser.s.. . . Figure 3. Results using constant field and linear chirp lasers, for two

The effective Raman transition dipole moments provide different time regimes in the red detuning (a) and (c), and blue detuning
information about the probability of ladder climbing in steps (b) and (d) cases. The population of the first vibrational levels is
of one vibrational quantun®g(j, j + 1) (second diagonal of  represented showing the selection.of= 6 at final times.
the effective Hamiltonian), two vibrational quar@(j, j + 2) ) ) N
(third diagonal), three vibrational quan@k(j, j + 3) (fourth assumptions of the modgl. In the red detuning case, transitions
diagonal), and so on. To compute the RTM coefficients, we from higher ground V|bra_t|onal states®,(4s) are also possible
obtain the eigenstates and eigenvalues of the four electronicPy three photon absorption. However, by wave packet propaga-
potentials by the FGH meth#tusing a very extended grid (up tion W|_th the full Hamiltonian (|ncluc_j|ng the f(_)ur elect_ronlc
to x = 20 A) that faithfully represents the dissociation. The Potentials), we have checked that this probability remains very
potentials and dipole moments are taken from ab initio calcula- low for the intensities tested in our numerical calculations.
tions of Schmidt?

In Figure 2, we show the coefficients for the first diagonals
both in the red and blue detuning cases. The importance of Raman ladder climbing is usually implemented for steps of
including more than one electronic state in the calculations is one vibrational quantum because, as seen in Figure 2, the
made clear in Figure 3, where we compute the RTM including coupling is maximal between sequential vibrational eigenfunc-
only one, two, or three excited electronic states§ 2—4 in tions for the first transitions. Therefore, at the beginning, we
egs 4 and 5]. It can be seen that the net effect of the potentialschoose the carrier frequencies of the pump and Stokes pulses
adds to the calculation of the RTM, and only the contribution such that the two-photon detuninif0) = w,(0) — ws(0), should
of very off-resonant potentials is negligible. In the red-detuning be larger than the frequency of the first transition; = w®
case, after summing the contribution of the first three excited — wo®. We can define an extra energy such ) = wo; +
electronic states, we obtain practically converged results of the w;. For transitions induced by frequency sweeping, this initial
RTM at least for the first vibrational levels, but omission of extra energy above the first resonance is required to ensure the
the contribution of any of these potentials [especidty(3p) full adiabatic passage of population between the coupled levels
and T1,(3p)] would imply a gross error in the calculation. In  in the following crossing.Now, negatively chirping the pump
the blue detuning case, we only compute the first 20 RTM frequency, we adapt the detuning to the decreasing energy
because higher vibrational states are in resonance with the lowersplitting between adjacent levels (in anharmonic molecules).
vibrational states of>(4s). Therefore, the denominator of eqgs When both pulses are switched off, if we want to selectnthe
4 and 5 tends to zero, and the effective Hamiltonian is no longer vibrational state, the detuning must be smaller thap-1 =
valid, since absorption to the excited electronic state breaks thew,® — wn—1®), but larger thanwniin = wne1® — 0n®.

500 1000 1500 2000

[Il. Optimization of Raman Ladder Climbing
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oM = Qy(1, 1,0 -, 2,12 0
HY | —QP(L, 2,02 0, - Qx2,2,0) — o) — dAt  —Q P2, 3,172 ©)
Ao - P92, 3,1)/2 w,M — Q(3, 3,1) — 2[6(t) + S(H)AL]

Therefore, the pulse must be tailored in a controlled way in For the final selection ob = j + 1,

order to select a single vibrational eigenfunction, especially for

short pulses and higher vibrational states. tc(” =lo;+ 2+ Qx(+1,j+1,1) —Qe(,j. DA, +
To proceed with the theory, we will now assume that we )

can neglect the effective couplings between nonadjacent levels. =Tl Tt F Yy, (12)

This is a very good approximation for the first levels, but, as

Figure 2 reveals, for higher vibrational levels the two- or even

three-step amplitudes can be far larger than the one-step t . =[2) + Qi+ 1,j+1,t) — Qi ), OV(Ay, + A)

where the last step requires an additional time of

amplitudes. Then, the respective Rabi frequencies might exceed b (13)
the detunings, which are decreasing due to the anharmonicity,
stopping or branching the one-stepladder climbfhgt all Therefore, the time for each transition depends on the anhar-

couplings except the one-step are set to zero, the effectivemonicity and the difference between the Raman amplitudes
Hamiltonian has a three-diagonal form. Then, by a suitable Gg(j + 1,j + 1) — Gg(j, j). Control over this parameter can be
unitary transformation we obtain eq 6, where the diagonal exerted directly by the chirp function (through the average and
Raman effective coupling includes the contribution from both instantaneous chirp rates), and indirectly by the field stEpe

the pump and Stokes pulses. Since we only consider synchro-which enters into the diagonal Raman effective couplings.
nous pulses, such that the pump and Stokes pulse shapes angowever, for aimost harmonic molecules, ladder climbing will
the sameFy(t) = E4t) = E(t), we will define a global Stark  be unlikely to succeed, since all the levels cross at the same
shift coefficient,Gr(j, j) = GRP(j, j) + Gr®S(j, j), such that time.

Qr(, j, t) = Gr(, HEM®~ Each sequential transition can be approximately formulated
The Hamiltonian in eq 6 ensures the sequential crossing in terms of a LandatiZener crossing of limited time duration
between adjacent vibrational levels. In the diabatic states tjj+1. Since for each time interval we may consider the field to

representation, when consecutive diagonal matrix elements ofpe constant with valué(tj+1), the Landaw-Zener formula

the Hamiltonian are equatj+1;+1°(tV) = Hj;*(t.0), there will provides the asymptotic probability for the crossing as

be a crossing between the vibrational levieedj + 1. This

implies that P y(t— ) =1 —expaQp, j + 1,t,,)72@A,, + A))
(14)

01y — OE) = 0t — Q4 + 1)+ 1,t7) — | . _
N If the exponent is large, the probabilig§+1(t — o) will be
Qr. 1, &1 =0 (7) practically unity, and thereforBj(t — ) will be zero. In the
. . i adiabatic representation, the crossing is not limited to a single
We can define a chirp function (or rate of frequency change) moment of time, and it requires some time for the transition to
such that be effective. Actually, the LandatZener formula (eq 14) only
) . provides the result in the diabatic representation for infinite time.
6(t) = wy(t) — odt) = 6(0) — [Id'A(t) (8) However, for all practical means, we can define from eq 14 an
approximate time required for the LandaZiener type crossing
The instantaneous chirp is théift) = A(t), and the average to be effectivé® as
chirp isAa(t) = foldt'A(t")/t. Then, the time of crossing between

jandj + 1is iz~ Qg(0,J +1,4;,)/2@,, + 1) (15)
. 00)— w1+ [Quli +1,i +1,0) — Qo] t This time must be shorter than the time that we dispose for the
t 0= [000) ~ @y ] + [0 ) ) ~0:J. 9] transition,tjj+1 = 2/(Aay + A). Therefore, for full crossing, two

C
Aoyt 4 conditions must be satisfied at the same time:

9)

For most diatomic molecules (particularly in the lowest vibra-
tional levels), the second difference between adjacent vibrational
levels is constant. Therefore;+1j ~ wr — 2jy, wherew is the
fundamental frequency ang is the anharmonicity constant. " . - .
Making 5(0) = wo1 + wi = ws — 2y + wi, the time for the first Condition 2: Qg(j, ] + 1, t;,,) < 2 17
crossing (between the ground and the first excited state) will ¢ the first condition is not satisfied, then the adiabatic passage
be is broken, and some population will remain in intermediate
© levels; if the second condition fails, then during the time interval
to7 =[w; + Qg(1, 1,1) — Qg(0, 0,)]/(4,, + 1) (10) t,+1, vibrational levels of energy higher thah1 will be excited
before the population is fully transferred jtot+ 1. Therefore,
The next crossing, between = 1 andv = 2, requires an  condition 2 corresponds to keeping the order of the sequence
additional time of by separating the LandaiZener crossings. The time separation
of the sequential crossings is solely guaranteed by the energy
= [2x + Qp(2, 2,t) — Qg(1, 1,1])/(4,, +4) (11) criterion in eq 17. From the theoretical point of view, both

Condition 1: Q(j,j + 1,t,,.)* = 2(A,, + 1)  (16)
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conditions justify in principle the validity of the LandaZener steps of the ladder, population inversion is almost perfect. For
model. However, it is also possible to extent further the analysis the red-detuning cas&gr™(j, j + 1) are always increasing,
when nonadiabatic couplings contribute to the final yield of the and the population inversion is poorer at the last steps. The
transition2° second main difference stems from the diagonal elements. In
Since Qg(j,k) depends orGg(j,K), it is extremely important the blue detuning case, for the first vibrational qua@g(j, j)
to consider the net effect of several excited electronic states.increases almost linearly with (again visible in Figure 2).
For vibrational quanta near = 6, the contribution from the = Therefore, each sequential crossing requires more time than that
second excited electronic state is oo the same order as thédor the red detuning case, whe@( + 1, + 1) ~ Gg(, j).
contribution from the first excited state, a@k(j, j + 1) can Since for Na the anharmonicity is very smaly (~ 1 cm3),
be about 150% larger than its value computed with just one full population inversion at each crossing implies the use of
excited state. Then, if we make calculations of Raman ladder weak fields according to condition 2 (eq 17). This in turn implies
climbing considering only the effect of the first excited low chirp rates by condition 1 (eq 16) and leads to long times
electronic state, we would need field amplitudes around 60% for the final excitation, since the global time is approximately

larger than those that we actually need. t) ~ (wi + 2jx)/24p. Therefore, we get the apparent contradic-
tion that although the global frequency swéfit.1)), is smaller
IV. Results and Discussion for molecules with low anharmonicity, the global time for

complete excitation must be larger.

In Na, the molecular constraints dueg@ndGgP9(j, j + 1)
lead to the following limiting parameters for the excitation of
v = 6: Since the maximum RTMGnmay is around 100 au and
the field amplitude is constant, condition 2 fixes the maximum
field possible a&nax~ 0.92 MV/cm (implying intensities close
to the GW/cm). On the other hand, since the minimum RTM
(Gmin) is 30 au and the chirp rate is constant, condition 1 fixes
the maximum linear chirp rate possible/agx~ 4.5 cm-1/ns.
This sets a minimum time for full excitation ef= 6 around 1

In Figure 3, we show the results of Raman ladder climbing
for the selection of the final vibrational state= 6, in the red
and blue detuning cases, for different final times. The calcula-
tions were made integrating the TDSE given in egddyy a
standard procedufd.To test the liability of the calculations,
we have also integrated the more general Badppenheimer
TDSE, without using the RWA and including the ground and
the first three electronic antisymmetric states (eq 1). The
numerical procedure to solve eq 1 combines a split-operator
propagator and a FFT technique to evaluate both the kinetic - . X . )
and potential terms in their diagonal representation. To do so, "S- This iS in agreement with the numerical calculations, which
we diagonalize by a standard procedure the matrix with laser Provide perfect results only for final times longer than 1 ns.
couplings and potential curves at every grid point and instant The use of Iarggr chirp rates implies shorter f|nql times gnd
of time. The wave packets are expanded on a spatial grid of [arger field amplitudes, at the expense of degrading the final
512 points spanning-10 A, and the time step is fixed to 1 au. y_|eld. Moreove_r, the final re_sult_ls quite sensitive to the exact
Since solving eq 1 is time-consuming, even for a computer, we timeé and duration of the switching off of the pulse. _
have simply verified that the reduced Raman Hamiltonian In fact, it can be seen that in the constant field and linear

faithfully reproduces the dynamics for both the red and blue ChirP régime, the parameters are constrained by the overall
detuning cases under the most intense fields probed in ourStructure of the couplings and by the anharmonicity, instead of

calculations. That is, for the previous laser frequencies, intensi-',[he molecplar parameters at each crossing. Therefore, the field
ties and durations, losses due to absorption to excited electronidS constrained to be
states are not important.

We have used fields of constant amplituBigexcept for a Eo = v/2¢/Grax (19)
short period of switching on and of~25 ps) with a linear
chirp function for the pump pulsesy(t) = wp(0) — Agt, whereas ~ While the chirp must be
the Stokes pulse has fixed carrier frequengg0). Then,A4,(t)

= = i i I G H 2
A(Y) : Ap, and the time of crossing between two consecutive 1<y min (20)
levels is Gia
Ly Qp(j +1,] +1,1) — Qg(j, |, 1) 18 and the minimum time for excitation of state depends
b= fp 22, (18) essentially on
In the upper plots of Figure 3, we test the performance of t > n Crman? (21)
the red (a) and blue (b) detuning cases wih= 3.2 cm—Y/ns " \Guin

andEp = 1.2 MV/cm for the red detuning case (a) abgl =
0.87 MV/cm for the blue detuning case (b). In the lower plots ~ To improve the results for ladder climbing at short times,
of Figure 3, we usé,, = 34 cm-Y/ns, andE; = 2.1 MV/cm we have to optimize the Raman ladder climbing method. Full
for the red detuning case (c) akg = 1.3 MV/cm for the blue optimization requires finding for each crossing intervat;pf;
detuning case (d). The parameters were chosen by fixing thethe best amplitud€&(t;;+1) and chirp profilei(tj+1). Whereas
chirp rate and finding the field amplitude that provided the best optimization of the amplitude is straightforward following eq
final yield possible. 17, optimization of the chirp requires considering at the same
As can be seen from Figure 3, there are two main differencestime the effect of both the instantaneous chirf), and the
between the red and blue detuning cases. First, because the RTMwverage chirda(t). The last one in a sense provides the linear
are in general larger for the blue detuning, we need lower field rate. Therefore, for the same field amplituded{f) < Aa.(t),
intensities in order to have similar two-photon Rabi frequencies. then the adiabatic transition will be more nearly perfect but it
Moreover, sinc&rPY(j, j + 1) decreases for the last transitions  will require more time; ifA(t) > Aa(t), then the adiabaticity
beforej = 6 (noticeable on Figure 2), condition 2 is better can be spoiled but the transition (thought not perfect) will be
accomplished for the last transitions, and therefore for the last faster.
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1 course, the price to pay is that the last transition expends almost
half the time of the overall process.
0.8
0.6 I V. Conclusions
4 I We have shown that Raman ladder climbing can be an
0. | effective way to invert the vibrational population in molecules
0.2 without permanent dipole moment, such as.N&e derived
= the conditions that the pulses must meet in order to sequentially
0 £ AR 4 S excite vibrational levels up to a final selected state both
0 50 100 150 200 250 efficiently and in a robust way, without considering rotational

effects.

For a specific molecule, we must first select the carrier
frequencies to avoid absorption to highly excited electronic
states. For Nawe propose two different experiments: one using
4 7.2e-04 small frequencies red detuned from all the excited electronic
states, and the other using larger frequencies detuned to the blue
of the first two excited electronic states. To compute the
4 7.0e-04 effective Raman transition dipole moments, it is essential to
~ D consider the effect of several electronic states. Since the effect
0 50 100 150 200 250 increases the Rabi frequenmes_, we need to use lower fields t_han

those that would be expected if the calculation were done with
t/ps just one electronic excited state. Therefore, the molecular
Figure 4. Results for the optimal ladder climbing process. In the upper _compIeX|ty arising from all the excited el_ectr_omc state helps to
plgt, the population of the fFi)rst vibrational Ievels%spshown. In the Io‘\)/\}/)er improve the reSUItS_Of Raman ladder climbing.
plot, the shape (left scale) and the nonlinear chirp profile (right scale) ~ The main constrain for the success of the method comes from
of the optimal fields are shown. the anharmonicity of the molecule. This imposes a maximum
field and therefore a maximum possible chirp rate, determining

Instead of fully optimizing the process, we have chosen a the minimum final time to invert the population to a specific
pulse with shapeE(t) = Egsir?(t/o) and a nonlinear chirp  level. For Na, population inversion te = 6 following a perfect
function (third-order polynomial). We have optimized the chirp ladder climbing pattern, with linear chirp rates and constant
for the red detuning case, constraining the final time by the fields, implies pulse durations longer than a nanosecond.
field envelope withc = 250 ps. The optimization was carried However, Raman ladder climbing can be optimized by
by line search in the reduced space of three parameigeng choosing specific field amplitudes and chirp profiles for each
two parameters of the chirp function, since we fix the overall sequential crossing. We have derived the conditions that the
frequency swept). Starting from input information from the optimal fields should satisfy. The core of the theory of optimal
analytic formulas given in egs 9, 16, and 17, we select the chirp Raman ladder climbing is summarized in eqgs 9, 16, and 17,
function that maximizes the yield for a given maximum field which evaluate the time required for the process and two
Eo, and we scan later for different amplitudes. conditions that must be satisfied, implying adiabatic following

In Figure 4, we show the results for the populations, optimal (condition 1) and full selective transitions (condition 2). We
field amplitude and optimal chirp. The final yield is better than have used the theory to optimize population inversion to level
95% and therefore implies an improvement of about 30% with » = 6 using a field with fix pulse shape and nonlinear chirp
respect to the linear chirp and constant amplitude case. In theprofile. The optimal results show that condition 1must be
optimal pulse, the maximum amplitudgy = 3.8 MV/cm, is satisfied during all of the process, but condition 2 only needs
larger than those obtained in the previous constant field casesto be satisfied in the last step of the ladder climbing. This
For this amplitude, condition 1 is obviously satisfied, ensuring conclusion might have important consequences for the excitation
full adiabatic passage, but condition 2 is not. Therefore, the of highly excited vibrational states and especially for molecular
sequential crossings follow without full population inversion, dissociation, where condition 2 is not restrictive.
as Figure 4 reveals. Nevertheless, it is important to notice that In this paper, we have only optimized the chirp profile. For
although the population is flowing to a higher level before it molecules with permanent dipole moment, using DC fields, it
reaches completely each state, the overall population passagés also possible to manipulate the Stark shifts and gain more
is not broken. In other words, the ladder climbing is obscured control. We anticipate that our results could be improved using
by the dynamics, but the excitation upward proceeds. more complicated chirp and laser profiles adapted to each

The behavior of the chirp function is also easy to understand. sequential crossing. Therefore, we believe that Raman ladder
Both at initial and final times, it deviates from linearity with  climbing can benefit from the most recent advances in the
A(t) < Aalt), compensating for the smaller amplitude of the field. chirping technology to become an important scheme for
At initial times, this is actually not very important, since the population inversion to highly excited vibrational states.
process starts far from the resonance of the first crossing. At
final times, on the contrary, it is crucial. Since the field is
decreasing, eq 17 is now satisfied. There is time to invert Acknowledgment. The authors thank Stephane @nefor
completely the population before exciting the next level. We very stimulated conversations at the beginning of this project.
need now to lower the chirp in order not to break the adiabatic Financial support from the DirecaiocGeneral de Investigaaio
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