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The theory of vibrational ladder climbing excitation by coherent stimulated nonresonant Raman using chirped
laser pulses is developed. We analytically obtain the conditions for inverting the population to a final preselected
vibrational state and the restrictions that apply in the linear chirp regime. By controlling both the shape of the
laser pulses and the chirp profile, the ladder climbing process can be accelerated without reducing the yield
of the selective excitation. Numerical results are presented for selection of moderately excited vibrational
levels in Na2, where the important contribution of several excited electronic states is also clarified.

I. Introduction

Exciting molecules in specific high vibrational states has been
a long-sought goal, both for a better understanding of the
spectroscopic properties of the molecule and for igniting some
unimolecular (bond breaking) or bimolecular (reactant preparing)
reactions.1 In molecules with a permanent dipole moment,
infrared (IR) laser pulses have been used to pump the vibrational
energy. By multiphoton IR processes, it has been possible to
excite single modes in regions of high anharmonicity and to
observe the subsequent intramolecular vibrational relaxation
(IVR).2 However, due to the very weak transition dipole
moments between the ground and high vibrational eigenstates,
population inversion is unlikely to succeed. For coherent
interactions, the minimum time for population inversion (defin-
ing the so-calledπ pulses) is given byπ times the inverse of
the Rabi frequency,Ω0V(t) ) µ0VE(t)/p, whereE(t) is the pulse
envelope andµ0V ) 〈ψV|µ|ψ0〉 is the transition dipole moment
between the initial (ψ0) and final (ψV) vibrational eigenfunctions.
For very weak transitions,µ0V , 1, and therefore population
inversion requires long pulses, with the onset of decoherent and
nonradiative processes, or very strong laser sources, usually
implying competition between several multiphoton routes, if not
directly ionizing the molecule.3

A possibility proposed by Manz and colleagues4 is to fraction
the overall transition into several sequential steps, each of which
is driven by a properπ pulse. The limit of this strategy is to
use oneπ pulse for every single quantum step excitationV f
V + 1. The population then follows a pattern equivalent to
climbing a ladder one step after another, which takes advantage
of the (usually) larger transition dipole moments involved
between adjacent vibrational states, especially in approximately
harmonic potentials. Nevertheless, the overall sequence of (V
- 1)π pulses is both experimentally difficult to prepare and
moreover poorly robust, since the yield of each step is very
sensitive to frequency, time, and intensity variations, and the
overall yield is the product of the yields of every step. This
also explains the inability of optimal control algorithms to obtain
this kind of solution, when not properly biased.5 Chelkowski et
al.6 and Guerin7 showed the way to circumvent the problem
using a single pulse with slowly varying frequency, adapted to
the anharmonicity of the potential. The pulse duration must be

at least as long as the whole sequence of (V - 1)π pulses and
the intensity stronger than the intensity of each one. For
sufficiently intense pulses, the population can be adiabatically
transferred from the initial state up to dissociation with 100%
efficiency at least in principle. The method is both robust and
not especially difficult to implement in the laboratory with state-
of-the-art technology.8

For molecules without a permanent dipole moment, the ladder
climbing method can be implemented using nonresonant
stimulated coherent Raman.9-12 In this case, either the pump
or the Stokes or both pulses must be chirped. The detuning with
respect to excited electronic states is required in order to avoid
absorption. Although there are a number of schemes which make
use of resonant Raman transitions, such as stimulated Raman
adiabatic passage (STIRAP)13 or stimulated emission pumping
(SEP),14 the Raman ladder climbing is an alternative method
especially suited for dissociation or high vibrational energy
excitation, since it benefits from the larger effective two-photon
transition dipole moments between adjacent vibrational levels.

In this paper, we develop a general theory of Raman ladder
climbing deriving the required conditions for the sequential
inversion of population between adjacent levels and obtaining
the minimum time for the final excitation of a single, selected
vibrational level. We demonstrate the important contribution
of highly excited electronic states and the possibility of
improving the yield of the process by a suitable election of the
laser amplitude and chirp profiles. The validity of the theoretical
results is numerically tested showing the efficiency of the Raman
ladder climbing method applied to the selective excitation of
vibrational states of a nonrotating sodium dimer. In section 2,
we present the molecular model and calculate the effective
Raman Rabi frequencies. In section 3, we develop the theory
of optimal Raman ladder climbing, which is numerically tested
in section 4. Section 5 is the conclusion.

II. Model for Nonresonant Raman in Na2

In Raman ladder climbing, the system is exposed to the action
of two fully overlapping lasers, the pumpEp(t), and the Stokes
Es(t) pulses. The pulses have the same amplitude, and the
frequency of the pump is negatively chirped; that is, its carrier
frequency smoothly decreases. The same results can be obtained
by positively chirping the frequency of the Stokes pulse or
chirping both.* E-mail: ignacio@tchiko.quim.ucm.es.
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Even in simple diatomic molecules such as Na2, for a
quantitative prediction of the dynamics driven by nonresonant
pulses, we have to take into account the contribution of several
electronic states. In Figure 1, we show the first singlet electronic
states of the Na2 molecule.15 For the nonresonant Raman
transition only antisymmetric “u” states [mainly1Σu(3p), 1Πu-
(3p), and1Σu(4s)] can contribute. We have basically considered
calculations at two different wavelengths:ω1 ≈ 8933 cm-1

(the red detuning case) andω1 ≈ 24 296 cm-1 (the blue
detuning case). The wavelengths were chosen to avoid competi-
tion of other multiphoton processes. As Figure 1 shows,
excitation of antisymmetric electronic states by absorption of
an odd number of photons, or to symmetric electronic states by
absorption of an even number of photons, are all nonresonant
and very unlikely for the wavelengths considered. The contribu-
tion of 2+ 2 or 3+ 3 hyper-Raman processes is also negligible.
In this case, the time-dependent Schro¨dinger equation (TDSE)
can be written as

whereE(t) ) Ep(t)cos[ωp(t)t] + Es(t)cos[ωs(t)t], and we only
include the coupling between the ground and the first three
excited antisymmetric electronic states.

To further analyze the dynamical behavior of the system, we
expand the wave function of the system in the basis of the

vibronic eigenstates of the coupled electronic states,|ψ(q, x,
t)〉 ) ΣR)1

MΣj)1
Ndj

(R)(t)|æj
(R)(x)X|¥R(q;x)〉 (whereM ) 4 in the

model that we use for Na2), and obtain the nonrotating time-
dependent Schro¨dinger equation (TDSE) for the vibrational
amplitudes,

In eq 2, the pump and Stokes one-photon Rabi frequencies are
those of the electronic transitions between the vibronic states,
ΩRj,âk

(p)/(s)(t) ) 〈æj
(R)X¥R|µEp/s(t)|æk

(â)X¥â〉p, whereEp/s(t) refers
to either the pump or the Stokes pulse envelopes. The fast
oscillatory terms that depend with the carrier frequencies of the
pulsesωp/s(t) are not included in the Rabi frequency definition.
The dot indicates a time derivative. The general Schro¨dinger
equation can be simplified assuming that the population in all
the excited electronic states is very small, which is a good
approximation for nonresonant transitions when the Rabi
frequencies of the absorption processes to the excited states are
far smaller than the respective detunings. If additionally the Rabi
frequencies are smaller thanωp, ωs, and ωp - ωs, then the
rotating wave approximation (RWA) can be used. Following
the method of adiabatic elimination,10 the equations of motion
for all amplitudes of the excited electronic states,dj

(R)(t)with R
> 1, can be formally integrated in terms of the ground-state
amplitudes. Then, the TDSE can be simplify to obtain the
following effective equations of motion,16

where the two-photon detuning isδ(t) ) ωp(t) - ωs(t) if k >
i [or ωs(t) - ωp(t) if i > k, assessing the Hermitian symmetry
of the Hamiltonian] and the Rabi frequenciesΩR

(Râ)(j, k, t) are
now two photon effective Raman Rabi frequencies. To simplify
the notation, we have included the index as a discrete variable.
Now eq 3 only involves the amplitudes of the ground electronic
vibrational states, and therefore is a TDSE that models the
dynamics under an effective Raman Hamiltonian. The adiabatic
elimination is formally equivalent to a second-order perturbation
expansion except that the ground amplitudes are not substituted
by their initial values in eq 3. In terms of the one-photon Rabi
frequencies, the diagonal two-photon effective Raman Rabi
frequencies are

giving account of the dynamic Stark shifts, whereas the
nondiagonal coupling terms are

Figure 1. First electronic potentials of the Na2 dimer. Solid line are
the potentials that can contribute to the Raman process. The remaining
potentials are in dashed lines. Also shown are the frequencies of the
pump and Stokes pulses used in the calculations of the paper, defining
the so-called red detuning and blue detuning cases.
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with j * k, which provide the transition amplitudes for the
vibrational ladder climbing. The two-photon Rabi frequencies
involve a summation over all the (N) vibrational levelsæm

(R)-
(x) (with eigenvaluesωm

(R)) of every (M) excited electronic state
R coupled with the ground state. In our calculations, we limit
M to the first three antisymmetric excited electronic states. The
effective Raman Rabi frequencies depend on the intensity of
the field. Their time dependence comes from the laser profile
via the one-photon Rabi frequency, and from the time-dependent
detuning in the denominators, which is very slow and can be
neglected or expanded as a function of the chirp. Therefore,
we can define the effective Raman transition dipole moments
(RTM), GR(j, k) ) {ΩR

(Râ)(j, k, t)}/{ER(t)Eâ(t)}, which only
depend on the geometry and energy of the potential energy
curves involved, that is, on the Franck-Condon factors and the
carrier frequencies of the lasers.

The effective Raman transition dipole moments provide
information about the probability of ladder climbing in steps
of one vibrational quantumGR(j, j + 1) (second diagonal of
the effective Hamiltonian), two vibrational quantaGR(j, j + 2)
(third diagonal), three vibrational quantaGR(j, j + 3) (fourth
diagonal), and so on. To compute the RTM coefficients, we
obtain the eigenstates and eigenvalues of the four electronic
potentials by the FGH method17 using a very extended grid (up
to x ) 20 Å) that faithfully represents the dissociation. The
potentials and dipole moments are taken from ab initio calcula-
tions of Schmidt.15

In Figure 2, we show the coefficients for the first diagonals
both in the red and blue detuning cases. The importance of
including more than one electronic state in the calculations is
made clear in Figure 3, where we compute the RTM including
only one, two, or three excited electronic states [R ) 2-4 in
eqs 4 and 5]. It can be seen that the net effect of the potentials
adds to the calculation of the RTM, and only the contribution
of very off-resonant potentials is negligible. In the red-detuning
case, after summing the contribution of the first three excited
electronic states, we obtain practically converged results of the
RTM at least for the first vibrational levels, but omission of
the contribution of any of these potentials [especially1Σu(3p)
and 1Πu(3p)] would imply a gross error in the calculation. In
the blue detuning case, we only compute the first 20 RTM
because higher vibrational states are in resonance with the lower
vibrational states of1Σu(4s). Therefore, the denominator of eqs
4 and 5 tends to zero, and the effective Hamiltonian is no longer
valid, since absorption to the excited electronic state breaks the

assumptions of the model. In the red detuning case, transitions
from higher ground vibrational states to1Σu(4s) are also possible
by three photon absorption. However, by wave packet propaga-
tion with the full Hamiltonian (including the four electronic
potentials), we have checked that this probability remains very
low for the intensities tested in our numerical calculations.

III. Optimization of Raman Ladder Climbing

Raman ladder climbing is usually implemented for steps of
one vibrational quantum because, as seen in Figure 2, the
coupling is maximal between sequential vibrational eigenfunc-
tions for the first transitions. Therefore, at the beginning, we
choose the carrier frequencies of the pump and Stokes pulses
such that the two-photon detuning,δ(0) t ωp(0) - ωs(0), should
be larger than the frequency of the first transition,ω01 t ω1

(1)

- ω0
(1). We can define an extra energy such thatδ(0) ) ω01 +

ωi. For transitions induced by frequency sweeping, this initial
extra energy above the first resonance is required to ensure the
full adiabatic passage of population between the coupled levels
in the following crossing.7 Now, negatively chirping the pump
frequency, we adapt the detuning to the decreasing energy
splitting between adjacent levels (in anharmonic molecules).
When both pulses are switched off, if we want to select thenth
vibrational state, the detuning must be smaller thanωn,n-1 t
ωn

(1) - ωn-1
(1), but larger thanωn+1,n t ωn+1

(1) - ωn
(1).

Figure 2. Effective Raman transition dipole moments (GR(i, j)) giving account of the Stark shift and sequential ladder climbing couplings. (a)
GR(i, j) calculated for the red detuning case and (b) for the blue detuning case. (c) Calculation done including only the first excited potential or three
excited potentials, as in the model proposed in the paper.

Figure 3. Results using constant field and linear chirp lasers, for two
different time regimes in the red detuning (a) and (c), and blue detuning
(b) and (d) cases. The population of the first vibrational levels is
represented showing the selection ofV ) 6 at final times.
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Therefore, the pulse must be tailored in a controlled way in
order to select a single vibrational eigenfunction, especially for
short pulses and higher vibrational states.

To proceed with the theory, we will now assume that we
can neglect the effective couplings between nonadjacent levels.
This is a very good approximation for the first levels, but, as
Figure 2 reveals, for higher vibrational levels the two- or even
three-step amplitudes can be far larger than the one-step
amplitudes. Then, the respective Rabi frequencies might exceed
the detunings, which are decreasing due to the anharmonicity,
stopping or branching the one-stepladder climbing.18 If all
couplings except the one-step are set to zero, the effective
Hamiltonian has a three-diagonal form. Then, by a suitable
unitary transformation we obtain eq 6, where the diagonal
Raman effective coupling includes the contribution from both
the pump and Stokes pulses. Since we only consider synchro-
nous pulses, such that the pump and Stokes pulse shapes are
the same,Ep(t) ) Es(t) ) E(t), we will define a global Stark
shift coefficient,GR(j, j) ) GR

(pp)(j, j) + GR
(ss)(j, j), such that

ΩR(j, j, t) ) GR(j, j)E(t)2.
The Hamiltonian in eq 6 ensures the sequential crossing

between adjacent vibrational levels. In the diabatic states
representation, when consecutive diagonal matrix elements of
the Hamiltonian are equal,Hj+1,j+1

ef(tc(j)) ) Hj,j
ef(tc(j)), there will

be a crossing between the vibrational levelsj and j + 1. This
implies that

We can define a chirp function (or rate of frequency change)
such that

The instantaneous chirp is thenδ̇(t) ) λ(t), and the average
chirp isλaV(t) ) ∫0

tdt′λ(t′)/t. Then, the time of crossing between
j and j + 1 is

For most diatomic molecules (particularly in the lowest vibra-
tional levels), the second difference between adjacent vibrational
levels is constant. Therefore,ωj+1,j ≈ ωf - 2jø, whereωf is the
fundamental frequency andø is the anharmonicity constant.
Making δ(0) ) ω01 + ωi ) ωf - 2ø + ωi, the time for the first
crossing (between the ground and the first excited state) will
be

The next crossing, betweenV ) 1 and V ) 2, requires an
additional time of

For the final selection ofV ) j + 1,

where the last step requires an additional time of

Therefore, the time for each transition depends on the anhar-
monicity and the difference between the Raman amplitudes
GR(j + 1, j + 1) - GR(j, j). Control over this parameter can be
exerted directly by the chirp function (through the average and
instantaneous chirp rates), and indirectly by the field shapeE(t),
which enters into the diagonal Raman effective couplings.
However, for almost harmonic molecules, ladder climbing will
be unlikely to succeed, since all the levels cross at the same
time.

Each sequential transition can be approximately formulated
in terms of a Landau-Zener crossing of limited time duration
tj,j+1. Since for each time interval we may consider the field to
be constant with valueE(tj,j+1), the Landau-Zener formula
provides the asymptotic probability for the crossing as

If the exponent is large, the probabilityPj+1(t f ∞) will be
practically unity, and thereforePj(t f ∞) will be zero. In the
adiabatic representation, the crossing is not limited to a single
moment of time, and it requires some time for the transition to
be effective. Actually, the Landau-Zener formula (eq 14) only
provides the result in the diabatic representation for infinite time.
However, for all practical means, we can define from eq 14 an
approximate time required for the Landau-Zener type crossing
to be effective19 as

This time must be shorter than the time that we dispose for the
transition,tj,j+1 ) 2ø/(λav + λ). Therefore, for full crossing, two
conditions must be satisfied at the same time:

and

If the first condition is not satisfied, then the adiabatic passage
is broken, and some population will remain in intermediate
levels; if the second condition fails, then during the time interval
tj,j+1, vibrational levels of energy higher than j+1 will be excited
before the population is fully transferred toj + 1. Therefore,
condition 2 corresponds to keeping the order of the sequence
by separating the Landau-Zener crossings. The time separation
of the sequential crossings is solely guaranteed by the energy
criterion in eq 17. From the theoretical point of view, both

Hef

p
) ( ω0

(1) - ΩR(1, 1,t) -ΩR
(ps)(1, 2,t)/2 0 · · ·

-ΩR
(ps)(1, 2,t)/2 ω1

(1) - ΩR(2, 2,t) - δ(t) - δ̇(t)∆t -ΩR
(ps)(2, 3,t)/2 · · ·

0 -ΩR
(ps)(2, 3,t)/2 ω2

(1) - ΩR(3, 3,t) - 2[δ(t) + δ̇(t)∆t] · · ·
·
·
·

·
·
·

·
·
·

· · ·

) (6)

ωj+1,j - [δ(tc
(j)) - δ(tc

(j))tc
(j)] - [ΩR(j + 1, j + 1, tc

(j)) -

ΩR(j, j, tc
(j))] ) 0 (7)

δ̇(t) t ωp(t) - ωs(t) ) δ(0) - ∫0

t
dt′λ(t′) (8)

tc
(j) )

[δ(0) - ωj+1,j] + [ΩR(j + 1, j + 1, t) - ΩR(j, j, t)]

λaV + λ
(9)

tc
(0) ) [ωi + ΩR(1, 1,t) - ΩR(0, 0,t)]/(λaV + λ) (10)

t12 ) [2ø + ΩR(2, 2,t) - ΩR(1, 1,t)]/(λaV + λ) (11)

tc
(j) ) [ωi + 2jø + ΩR(j + 1, j + 1, t) - ΩR(j, j, t)]/(λaV +

λ) ) tc
(0) + t12 + t23 + ... + tj,j+1 (12)

tj,j+1 ) [2ø + ΩR(j + 1, j + 1, t) - ΩR(j, j, t)]/(λaV + λ)
(13)

Pj+1(t f ∞) ) 1 - exp(-πΩR(j, j + 1, tj,j+1)
2/2(λaV + λ))

(14)

tLZ ∼ ΩR(j, j + 1, tj,j+1)/2(λaV + λ) (15)

Condition 1: ΩR(j, j + 1, tj,j+1)
2 g 2(λaV + λ) (16)

Condition 2: ΩR(j, j + 1, tj,j+1) e 2ø (17)
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conditions justify in principle the validity of the Landau-Zener
model. However, it is also possible to extent further the analysis
when nonadiabatic couplings contribute to the final yield of the
transition.20

SinceΩR(j,k) depends onGR(j,k), it is extremely important
to consider the net effect of several excited electronic states.
For vibrational quanta nearV ) 6, the contribution from the
second excited electronic state is oo the same order as the
contribution from the first excited state, andGR(j, j + 1) can
be about 150% larger than its value computed with just one
excited state. Then, if we make calculations of Raman ladder
climbing considering only the effect of the first excited
electronic state, we would need field amplitudes around 60%
larger than those that we actually need.

IV. Results and Discussion

In Figure 3, we show the results of Raman ladder climbing
for the selection of the final vibrational stateV ) 6, in the red
and blue detuning cases, for different final times. The calcula-
tions were made integrating the TDSE given in eqs 3-5 by a
standard procedure.21 To test the liability of the calculations,
we have also integrated the more general Born-Oppenheimer
TDSE, without using the RWA and including the ground and
the first three electronic antisymmetric states (eq 1). The
numerical procedure to solve eq 1 combines a split-operator
propagator and a FFT technique to evaluate both the kinetic
and potential terms in their diagonal representation. To do so,
we diagonalize by a standard procedure the matrix with laser
couplings and potential curves at every grid point and instant
of time. The wave packets are expanded on a spatial grid of
512 points spanning∼10 Å, and the time step is fixed to 1 au.
Since solving eq 1 is time-consuming, even for a computer, we
have simply verified that the reduced Raman Hamiltonian
faithfully reproduces the dynamics for both the red and blue
detuning cases under the most intense fields probed in our
calculations. That is, for the previous laser frequencies, intensi-
ties and durations, losses due to absorption to excited electronic
states are not important.

We have used fields of constant amplitudeE0 except for a
short period of switching on and off (∼25 ps) with a linear
chirp function for the pump pulse,ωp(t) ) ωp(0) - λpt, whereas
the Stokes pulse has fixed carrier frequencyωs(0). Then,λaV(t)
) λ(t) ) λp, and the time of crossing between two consecutive
levels is

In the upper plots of Figure 3, we test the performance of
the red (a) and blue (b) detuning cases withλp ) 3.2 cm-1/ns
andE0 ) 1.2 MV/cm for the red detuning case (a) andE0 )
0.87 MV/cm for the blue detuning case (b). In the lower plots
of Figure 3, we useλp ) 34 cm-1/ns, andE0 ) 2.1 MV/cm
for the red detuning case (c) andE0 ) 1.3 MV/cm for the blue
detuning case (d). The parameters were chosen by fixing the
chirp rate and finding the field amplitude that provided the best
final yield possible.

As can be seen from Figure 3, there are two main differences
between the red and blue detuning cases. First, because the RTM
are in general larger for the blue detuning, we need lower field
intensities in order to have similar two-photon Rabi frequencies.
Moreover, sinceGR

(ps)(j, j + 1) decreases for the last transitions
before j ) 6 (noticeable on Figure 2), condition 2 is better
accomplished for the last transitions, and therefore for the last

steps of the ladder, population inversion is almost perfect. For
the red-detuning case,GR

(ps)(j, j + 1) are always increasing,
and the population inversion is poorer at the last steps. The
second main difference stems from the diagonal elements. In
the blue detuning case, for the first vibrational quanta,GR(j, j)
increases almost linearly withj (again visible in Figure 2).
Therefore, each sequential crossing requires more time than that
for the red detuning case, whereGR(j + 1, j + 1) ≈ GR(j, j).

Since for Na2 the anharmonicity is very small (ø ∼ 1 cm-1),
full population inversion at each crossing implies the use of
weak fields according to condition 2 (eq 17). This in turn implies
low chirp rates by condition 1 (eq 16) and leads to long times
for the final excitation, since the global time is approximately
tc(j) ≈ (ωi + 2jø)/2λp. Therefore, we get the apparent contradic-
tion that although the global frequency sweptδ(tc(j)), is smaller
for molecules with low anharmonicity, the global time for
complete excitation must be larger.

In Na2, the molecular constraints due toø andGR
(ps)(j, j + 1)

lead to the following limiting parameters for the excitation of
V ) 6: Since the maximum RTM (Gmax) is around 100 au and
the field amplitude is constant, condition 2 fixes the maximum
field possible asEmax∼ 0.92 MV/cm (implying intensities close
to the GW/cm2). On the other hand, since the minimum RTM
(Gmin) is 30 au and the chirp rate is constant, condition 1 fixes
the maximum linear chirp rate possible asλmax ∼ 4.5 cm-1/ns.
This sets a minimum time for full excitation ofV ) 6 around 1
ns. This is in agreement with the numerical calculations, which
provide perfect results only for final times longer than 1 ns.
The use of larger chirp rates implies shorter final times and
larger field amplitudes, at the expense of degrading the final
yield. Moreover, the final result is quite sensitive to the exact
time and duration of the switching off of the pulse.

In fact, it can be seen that in the constant field and linear
chirp regime, the parameters are constrained by the overall
structure of the couplings and by the anharmonicity, instead of
the molecular parameters at each crossing. Therefore, the field
is constrained to be

while the chirp must be

and the minimum time for excitation of staten depends
essentially on

To improve the results for ladder climbing at short times,
we have to optimize the Raman ladder climbing method. Full
optimization requires finding for each crossing interval oftj,j+1

the best amplitudeE(tj,j+1) and chirp profileλ(tj,j+1). Whereas
optimization of the amplitude is straightforward following eq
17, optimization of the chirp requires considering at the same
time the effect of both the instantaneous chirpλ(t), and the
average chirpλav(t). The last one in a sense provides the linear
rate. Therefore, for the same field amplitude, ifλ(t) < λaV(t),
then the adiabatic transition will be more nearly perfect but it
will require more time; ifλ(t) > λaV(t), then the adiabaticity
can be spoiled but the transition (thought not perfect) will be
faster.

E0 e x2ø/Gmax (19)

λ < (ø
Gmin

Gmax
)2

(20)

tn > n
ø(Gmax

Gmin
)2

(21)

tj,j+1 ) ø
λp

+
ΩR(j + 1, j + 1, t) - ΩR(j, j, t)

2λp
(18)

8868 J. Phys. Chem. A, Vol. 105, No. 39, 2001 Chang et al.



Instead of fully optimizing the process, we have chosen a
pulse with shapeE(t) ) E0sin2(πt/σ) and a nonlinear chirp
function (third-order polynomial). We have optimized the chirp
for the red detuning case, constraining the final time by the
field envelope withσ ) 250 ps. The optimization was carried
by line search in the reduced space of three parameters (E0 and
two parameters of the chirp function, since we fix the overall
frequency swept). Starting from input information from the
analytic formulas given in eqs 9, 16, and 17, we select the chirp
function that maximizes the yield for a given maximum field
E0, and we scan later for different amplitudes.

In Figure 4, we show the results for the populations, optimal
field amplitude and optimal chirp. The final yield is better than
95% and therefore implies an improvement of about 30% with
respect to the linear chirp and constant amplitude case. In the
optimal pulse, the maximum amplitude,E0 ) 3.8 MV/cm, is
larger than those obtained in the previous constant field cases.
For this amplitude, condition 1 is obviously satisfied, ensuring
full adiabatic passage, but condition 2 is not. Therefore, the
sequential crossings follow without full population inversion,
as Figure 4 reveals. Nevertheless, it is important to notice that
although the population is flowing to a higher level before it
reaches completely each state, the overall population passage
is not broken. In other words, the ladder climbing is obscured
by the dynamics, but the excitation upward proceeds.

The behavior of the chirp function is also easy to understand.
Both at initial and final times, it deviates from linearity with
λ(t) < λav(t), compensating for the smaller amplitude of the field.
At initial times, this is actually not very important, since the
process starts far from the resonance of the first crossing. At
final times, on the contrary, it is crucial. Since the field is
decreasing, eq 17 is now satisfied. There is time to invert
completely the population before exciting the next level. We
need now to lower the chirp in order not to break the adiabatic
passage. When both conditions are satisfied, the yield of
population inversion to a single level is almost perfect. Of

course, the price to pay is that the last transition expends almost
half the time of the overall process.

V. Conclusions

We have shown that Raman ladder climbing can be an
effective way to invert the vibrational population in molecules
without permanent dipole moment, such as Na2. We derived
the conditions that the pulses must meet in order to sequentially
excite vibrational levels up to a final selected state both
efficiently and in a robust way, without considering rotational
effects.

For a specific molecule, we must first select the carrier
frequencies to avoid absorption to highly excited electronic
states. For Na2, we propose two different experiments: one using
small frequencies red detuned from all the excited electronic
states, and the other using larger frequencies detuned to the blue
of the first two excited electronic states. To compute the
effective Raman transition dipole moments, it is essential to
consider the effect of several electronic states. Since the effect
increases the Rabi frequencies, we need to use lower fields than
those that would be expected if the calculation were done with
just one electronic excited state. Therefore, the molecular
complexity arising from all the excited electronic state helps to
improve the results of Raman ladder climbing.

The main constrain for the success of the method comes from
the anharmonicity of the molecule. This imposes a maximum
field and therefore a maximum possible chirp rate, determining
the minimum final time to invert the population to a specific
level. For Na2, population inversion toV ) 6 following a perfect
ladder climbing pattern, with linear chirp rates and constant
fields, implies pulse durations longer than a nanosecond.

However, Raman ladder climbing can be optimized by
choosing specific field amplitudes and chirp profiles for each
sequential crossing. We have derived the conditions that the
optimal fields should satisfy. The core of the theory of optimal
Raman ladder climbing is summarized in eqs 9, 16, and 17,
which evaluate the time required for the process and two
conditions that must be satisfied, implying adiabatic following
(condition 1) and full selective transitions (condition 2). We
have used the theory to optimize population inversion to level
V ) 6 using a field with fix pulse shape and nonlinear chirp
profile. The optimal results show that condition 1must be
satisfied during all of the process, but condition 2 only needs
to be satisfied in the last step of the ladder climbing. This
conclusion might have important consequences for the excitation
of highly excited vibrational states and especially for molecular
dissociation, where condition 2 is not restrictive.

In this paper, we have only optimized the chirp profile. For
molecules with permanent dipole moment, using DC fields, it
is also possible to manipulate the Stark shifts and gain more
control. We anticipate that our results could be improved using
more complicated chirp and laser profiles adapted to each
sequential crossing. Therefore, we believe that Raman ladder
climbing can benefit from the most recent advances in the
chirping technology to become an important scheme for
population inversion to highly excited vibrational states.
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Figure 4. Results for the optimal ladder climbing process. In the upper
plot, the population of the first vibrational levels is shown. In the lower
plot, the shape (left scale) and the nonlinear chirp profile (right scale)
of the optimal fields are shown.

Optimizing Raman Ladder Climbing J. Phys. Chem. A, Vol. 105, No. 39, 20018869



References and Notes

(1) Crim, F. F.J. Phys. Chem.1996, 100, 12725.
(2) (a) Nesbitt D. J.; Field, R. W.J. Phys. Chem.1996, 100, 12735.

(b) Quack, M.Annu. ReV. Phys. Chem.1990, 41, 839. (c) Lehmann, K. K.;
Scoles, G.; Pate, B. H.Annu. ReV. Phys. Chem.1994, 45, 241. (d) Uzer, T.
Phys. Rep. 1991, 199, 124.

(3) (a) Keldysh, L. V.SoV. Phys. JETP1965, 20, 1307.(b) Corkum,
P. B.; Burnett, N. H.; Brunel, F.Phys. ReV. Lett. 1989, 62, 1259.

(4) (a) Combariza, J. E.; Just, B.; Manz, J.; Paramonov, G. K.J. Phys.
Chem.1991, 95, 10351. (b) Combariza, J. E.; Manz, J.; Paramonov, G. K.
Faraday Discuss. Chem. Soc. 1991, 91, 358. (c) Korolkov, M. V.;
Paramonov, G. K.; Schmidt, B.J. Chem. Phys.1996, 105, 1862.

(5) Shen, H.; Dussault, J.; Bandrauk, A. D.Chem. Phys. Lett.1994,
221, 498.

(6) (a) Chelkowski, S.; Bandrauk, A. D.; Corkum, P. B.Phys. ReV.
Lett. 1990, 65, 2355. (b) Chelkowski, S.; Bandrauk, A. D.Chem. Phys.
Lett. 1991, 186, 264. (c) Chelkowski, S.; Bandrauk, A. D.J. Chem. Phys.
1993, 99, 4279.

(7) Guerin, S.Phys. ReV. A 1997, 56, 1458.
(8) (a) Weiner, A. M.; Heritage, J. P.; Thurston, R. N.Opt. Lett.1986,

11, 153. (b) Bardeen, C. J.; Wang, Q.; Shank, C. V.Phys. ReV. Lett.1995,
75, 3410. (c) Melinger, J. S.; McMorrow, D.; Hillegas, C.; Warren, W. S.
Phys. ReV. A 1995, 51, 3366. (d) Assion, A.; Baumert, T.; Bergt, M.;
Brixner, T.; Kiefer, B.; Seyfried, V.; Strehle, M.; Gerber, G.Science1998,
282, 919. (e) Maas, D. J.; Duncan, D. I.; Vrijen, R. B.; van der Zende, W.
J.; Noordam, L. D.Chem. Phys. Lett.1998, 290, 75.

(9) Chelkowski, S.; Gibson, G. N.Phys. ReV. A 1995, 52, R3417.
(10) Chelkowski, S.; Bandrauk, A. D.J. Raman Spectrosc.1997, 28,

459.
(11) Davis, J. C.; Warren, W. S.J. Chem. Phys.1999, 110, 4229.
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